Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.227
1.
PLoS One ; 19(5): e0303060, 2024.
Article En | MEDLINE | ID: mdl-38723008

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
2.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727927

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
3.
Cancer Med ; 13(9): e7170, 2024 May.
Article En | MEDLINE | ID: mdl-38693813

BACKGROUND: Anamorelin was approved in Japan in 2021 to treat cancer cachexia associated with non-small cell lung, gastric, pancreatic, or colorectal cancers. Post-marketing surveillance is being conducted to evaluate the real-world safety and effectiveness of anamorelin. METHODS: This prospective, observational surveillance registered all patients who started treatment with anamorelin after April 21, 2021. Hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were defined as main safety specifications. Body weight (BW) and appetite were assessed as effectiveness specifications. RESULTS: This analysis was based on data as of January 21, 2023. The safety and effectiveness analysis sets included 6016 and 4511 patients, respectively. Treatment-related adverse events in ≥1% of patients were hyperglycemia (3.9%) and nausea (2.6%). The incidences of hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were 4.8%, 1.2%, and 1.1%, respectively. The mean changes (standard error [SE]) in BW from baseline to weeks 3, 12, 24, and 52 were 0.64 (0.05) kg, 1.19 (0.12) kg, 1.40 (0.21) kg, and 1.42 (0.39) kg, respectively. The mean changes (SE) in Functional Assessment of Anorexia/Cachexia Treatment 5-item Anorexia Symptom Scale total scores from baseline to weeks 3, 12, 24, and 52 were 3.2 (0.09), 4.8 (0.18), 5.2 (0.30), and 5.3 (0.47), respectively, exceeding the clinically meaningful improvement score (2.0 points). CONCLUSION: The overall safety of anamorelin raised no new safety concerns, although continued caution may be required for hyperglycemia and nausea. Improvements in BW and appetite were also observed in real-world clinical settings.


Cachexia , Hydrazines , Neoplasms , Product Surveillance, Postmarketing , Humans , Cachexia/drug therapy , Cachexia/etiology , Male , Female , Aged , Prospective Studies , Neoplasms/complications , Neoplasms/drug therapy , Japan , Middle Aged , Hyperglycemia/drug therapy , Oligopeptides/therapeutic use , Oligopeptides/adverse effects , Treatment Outcome , Adult , Appetite/drug effects
4.
Pak J Pharm Sci ; 37(1(Special)): 199-203, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747270

This study investigates the combined effect of vitamin C and chromium on BMI, lipid profile, LFTs and HbA1c of Diabetes Mellitus type 2 patients. This is randomized controlled trial study. For this study a total of 60 patients (n=28 female, n=32 male) Diabetes Mellitus type 2 patients were selected. They were divided into treatment group (vitamin C (500mg) Chromium (200µg) and control group (placebo) comprising thirty patients per group. Mean age in control group and treatment group is 33± 5.729 and 33±7.017 respectively. Statistical analysis showed significant results of lipid profile; total cholesterol (mg/dl) 198±66.1 P=0.008, High-Density Lipoprotein 38±7.5, P<0.001, Low Density Lipoprotein (LDL) (mg/dl) 105.1±22.4, P=0.002 and Triglycerides 191±64.3, P=0.02 are respectively. Levels of serum ALT (u/l) (34.7±9.1, P<0.001) and AST (u/l) (31.6 ±8.6, P<0.001) were significantly lower as compared to control group. HbA1c percentages were also normalized (5.45±0.2, P<.001) as compared to group 2. BMI values were also improved (P=0.01) after treatment. Combined supplementation of vitamin C and chromium reduce the plasma lipid percentage, blood glucose levels and also improve the ALT and AST functions.


Ascorbic Acid , Body Mass Index , Chromium , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Humans , Female , Male , Ascorbic Acid/therapeutic use , Chromium/therapeutic use , Adult , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/blood , Hyperlipidemias/drug therapy , Hyperlipidemias/blood , Lipids/blood , Liver/drug effects , Liver/enzymology , Liver/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Middle Aged
5.
Sci Rep ; 14(1): 10128, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698018

Glycemic variability (GV) has been associated with an increased mortality rate among critically ill patients. The clinical outcomes of having less GV even with slight hyperglycemia are better than those having tight glycemic control but higher GV. Insulin infusion remains the preferred method to control stress hyperglycemia in critically ill patients. However, its impacts on GV and clinical outcomes in critically ill patients still need further investigation. This study intended to evaluate the impact of insulin infusion therapy (IIT) compared to the insulin sliding scale (ISS) on the extent of GV and explore its impact on the clinical outcomes for critically ill patients. A prospective, single-center observational cohort study was conducted at a tertiary academic hospital in Saudi Arabia between March 2021 and November 2021. The study included adult patients admitted to ICUs who received insulin for stress hyperglycemia management. Patients were categorized into two groups based on the regimen of insulin therapy during ICU stay (IIT versus ISS). The primary outcome was the GV between the two groups. Secondary outcomes were ICU mortality, the incidence of hypoglycemia, and ICU length of stay (LOS). A total of 381 patients were screened; out of them, eighty patients met the eligibility criteria. The distribution of patients having diabetes and a history of insulin use was similar between the two groups. The GV was lower in the IIT group compared to the ISS group using CONGA (- 0.65, 95% CI [- 1.16, - 0.14], p-value = 0.01). Compared with ISS, patients who received IIT had a lower incidence of hypoglycemia that required correction (6.8% vs 2.77%; p-value = 0.38). In contrast, there were no significant differences in ICU LOS and ICU mortality between the two groups. Our study demonstrated that the IIT is associated with decreased GV significantly in critically ill patients without increasing the incidence of severe hypoglycemia. There is no survival benefit with the use of the IIT. Further studies with larger sample size are required to confirm our findings and elaborate on IIT's potential effect in reducing ICU complications in critically ill patients.


Blood Glucose , Critical Illness , Hyperglycemia , Insulin , Intensive Care Units , Humans , Insulin/administration & dosage , Insulin/therapeutic use , Male , Female , Middle Aged , Prospective Studies , Blood Glucose/drug effects , Hyperglycemia/drug therapy , Aged , Length of Stay , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Saudi Arabia/epidemiology , Hypoglycemia/drug therapy , Adult , Glycemic Control/methods
6.
ACS Biomater Sci Eng ; 10(5): 3097-3107, 2024 May 13.
Article En | MEDLINE | ID: mdl-38591966

To develop a peri-implantitis model in a Gottingen minipig and evaluate the effect of local application of salicylic acid poly(anhydride-ester) (SAPAE) on peri-implantitis progression in healthy, metabolic syndrome (MS), and type-2 diabetes mellitus (T2DM) subjects. Eighteen animals were allocated to three groups: (i) control, (ii) MS (diet for obesity induction), and (iii) T2DM (diet plus streptozotocin for T2DM induction). Maxillary and mandible premolars and first molar were extracted. After 3 months of healing, four implants per side were placed in both jaws of each animal. After 2 months, peri-implantitis was induced by plaque formation using silk ligatures. SAPAE polymer was mixed with mineral oil (3.75 mg/µL) and topically applied biweekly for up to 60 days to halt peri-implantitis progression. Periodontal probing was used to assess pocket depth over time, followed by histomorphologic analysis of harvested samples. The adopted protocol resulted in the onset of peri-implantitis, with healthy minipigs taking twice as long to reach the same level of probing depth relative to MS and T2DM subjects (∼3.0 mm), irrespective of jaw. In a qualitative analysis, SAPAE therapy revealed decreased levels of inflammation in the normoglycemic, MS, and T2DM groups. SAPAE application around implants significantly reduced the progression of peri-implantitis after ∼15 days of therapy, with ∼30% lower probing depth for all systemic conditions and similar rates of probing depth increase per week between the control and SAPAE groups. MS and T2DM conditions presented a faster progression of the peri-implant pocket depth. SAPAE treatment reduced peri-implantitis progression in healthy, MS, and T2DM groups.


Peri-Implantitis , Salicylic Acid , Swine, Miniature , Animals , Swine , Peri-Implantitis/drug therapy , Peri-Implantitis/pathology , Salicylic Acid/administration & dosage , Salicylic Acid/pharmacology , Salicylic Acid/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Disease Progression , Hyperglycemia/drug therapy , Male , Diabetes Mellitus, Experimental/drug therapy , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Dental Implants
7.
Curr Diab Rep ; 24(6): 131-145, 2024 Jun.
Article En | MEDLINE | ID: mdl-38568467

PURPOSE OF REVIEW: Postprandial hyperglycemia, or elevated blood glucose after meals, is associated with the development and progression of various diabetes-related complications. Prandial insulins are designed to replicate the natural insulin release after meals and are highly effective in managing post-meal glucose spikes. Currently, different types of prandial insulins are available such as human regular insulin, rapid-acting analogs, ultra-rapid-acting analogs, and inhaled insulins. Knowledge about diverse landscape of prandial insulin will optimize glycemic management. RECENT FINDINGS: Human regular insulin, identical to insulin produced by the human pancreas, has a slower onset and extended duration, potentially leading to post-meal hyperglycemia and later hypoglycemia. In contrast, rapid-acting analogs, such as lispro, aspart, and glulisine, are new insulin types with amino acid modifications that enhance their subcutaneous absorption, resulting in a faster onset and shorter action duration. Ultra-rapid analogs, like faster aspart and ultra-rapid lispro, offer even shorter onset of action, providing better meal-time flexibility. The Technosphere insulin offers an inhaled route for prandial insulin delivery. The prandial insulins can be incorporated into basal-bolus, basal plus, or prandial-only regimens or delivered through insulin pumps. Human regular insulin, aspart, lispro, and faster aspart are recommended for management of hyperglycemia during pregnancy. Ongoing research is focused on refining prandial insulin replacement and exploring newer delivery methods. The article provides a comprehensive overview of various prandial insulin options and their clinical applications in the management of diabetes.


Hypoglycemic Agents , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Postprandial Period , Hyperglycemia/drug therapy , Female , Blood Glucose/drug effects , Blood Glucose/analysis , Diabetes Mellitus/drug therapy , Pregnancy
8.
J Diabetes Sci Technol ; 18(3): 562-569, 2024 May.
Article En | MEDLINE | ID: mdl-38563491

BACKGROUND: We evaluated the feasibility of real-time continuous glucose monitoring (CGM) for titrating continuous intravenous insulin infusion (CII) to manage hyperglycemia in postoperative individuals in the cardiovascular intensive care unit and assessed their accuracy, nursing acceptance, and postoperative individual satisfaction. METHODS: Dexcom G6 CGM devices were applied to 59 postsurgical patients with hyperglycemia receiving CII. A hybrid approach combining CGM with periodic point-of-care blood glucose (POC-BG) tests with two phases (initial-ongoing) of validation was used to determine CGM accuracy. Mean and median absolute relative differences and Clarke Error Grid were plotted to evaluate the CGM accuracy. Surveys of nurses and patients on the use of CGMs experience were conducted and results were analyzed. RESULTS: In this cohort (mean age 64, 32% female, 32% with diabetes) with 864 paired POC-BG and CGM values analyzed, mean and median absolute relative difference between POC-BG and CGM values were 13.2% and 9.8%, respectively. 99.7% of paired CGM and POC-BG were in Zones A and B of the Clarke Error Grid. Responses from nurses reported CGMs being very or quite convenient (n = 28; 93%) and it was favored over POC-BG testing (n = 28; 93%). Majority of patients (n = 42; 93%) reported their care process using CGM as being good or very good. CONCLUSION: This pilot study demonstrates the feasibility, accuracy, and nursing convenience of adopting CGM via a hybrid approach for insulin titration in postoperative settings. These findings provide robust rationale for larger confirmatory studies to evaluate the benefit of CGM in postoperative care to improve workflow, enhance health outcomes, and cost-effectiveness.


Blood Glucose , Feasibility Studies , Hypoglycemic Agents , Insulin Infusion Systems , Insulin , Humans , Female , Male , Middle Aged , Blood Glucose/analysis , Blood Glucose/drug effects , Insulin/administration & dosage , Aged , Hypoglycemic Agents/administration & dosage , Intensive Care Units , Hyperglycemia/blood , Hyperglycemia/drug therapy , Infusions, Intravenous , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Blood Glucose Self-Monitoring/instrumentation , Continuous Glucose Monitoring
10.
PLoS One ; 19(4): e0301496, 2024.
Article En | MEDLINE | ID: mdl-38635745

Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy. Here, we tested whether elevating PRL levels with the prokinetic and antipsychotic drug sulpiride, an antagonist of dopamine D2 receptors, improves metabolism in high fat diet (HFD)-induced obese male mice. Sulpiride treatment (30 days) reduced hyperglycemia, IR, and the serum and pancreatic levels of triglycerides in obese mice, reduced visceral and subcutaneous AT adipocyte hypertrophy, normalized markers of visceral AT function (PRL receptor, Glut4, insulin receptor and Hif-1α), and increased glycogen stores in skeletal muscle. However, the effects of sulpiride reducing hyperglycemia were also observed in obese prolactin receptor null mice. We conclude that sulpiride reduces obesity-induced hyperglycemia by mechanisms that are independent of prolactin/prolactin receptor activity. These findings support the therapeutic potential of sulpiride against metabolic dysfunction in obesity.


Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Humans , Mice , Male , Rats , Animals , Mice, Obese , Dopamine D2 Receptor Antagonists , Prolactin , Receptors, Prolactin , Diabetes Mellitus, Type 2/drug therapy , Sulpiride/pharmacology , Sulpiride/therapeutic use , Obesity/drug therapy , Obesity/etiology , Diet, High-Fat/adverse effects , Hyperglycemia/drug therapy , Hypertrophy , Insulin/metabolism
11.
Sci Rep ; 14(1): 7746, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565861

Diabetes Mellitus is a metabolic disease characterized by elevated blood sugar levels caused by inadequate insulin production, which subsequently leads to hyperglycemia. This study was aimed to investigate the antidiabetic potential of pyrazolobenzothiazine derivatives in silico, in vitro, and in vivo. Molecular docking of pyrazolobenzothiazine derivatives was performed against α-glucosidase and α-amylase and compounds were selected based on docking score, bonding interactions and low root mean square deviation (RMSD). Enzyme inhibition assay against α-glucosidase and α-amylase was performed in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) and starch substrate. Synthetic compound pyrazolobenzothiazine (S1) exhibited minimal conformational changes during the 100 ns MD simulation run. S1 also revealed effective IC50 values for α-glucosidase (3.91 µM) and α-amylase (8.89 µM) and an enzyme kinetic study showed low ki (- 0.186 µM, - 1.267 µM) and ki' (- 0.691 µM, - 1.78 µM) values with the competitive type of inhibition for both enzymes α-glucosidase and α-amylase, respectively. Moreover, studies were conducted to check the effect of the synthetic compound in a mouse model. A low necrosis rate was observed in the liver, kidney, and pancreas through histology analysis performed on mice. Compound S1 also exhibited a good biochemical profile with lower sugar level (110-115 mg/dL), increased insulin level (25-30 µM/L), and low level of cholesterol (85 mg/dL) and creatinine (0.6 mg/dL) in blood. The treated mice group also exhibited a low % of glycated haemoglobin (3%). This study concludes that S1 is a new antidiabetic-agent that helps lower blood glucose levels and minimizes the complications associated with type-II diabetes.


Hyperglycemia , Hypoglycemic Agents , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Hyperglycemia/drug therapy , Insulin , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Structure-Activity Relationship
12.
Sci Rep ; 14(1): 9483, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664520

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Alkaloids , Benzodioxoles , HSP90 Heat-Shock Proteins , Hyperglycemia , Molecular Docking Simulation , Piperidines , Poly (ADP-Ribose) Polymerase-1 , Polylactic Acid-Polyglycolic Acid Copolymer , Polyunsaturated Alkamides , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Piperidines/pharmacology , Piperidines/chemistry , Benzodioxoles/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Alloxan , Rats , Humans , Male , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , DNA Damage/drug effects
13.
Respir Investig ; 62(3): 503-511, 2024 May.
Article En | MEDLINE | ID: mdl-38599052

BACKGROUND: For the treatment of COPD exacerbations, systemic corticosteroids are recommended in addition to short-acting bronchodilators. Although there have been several systemic reviews, many of the included studies were conducted before 2007 and a re-evaluation has not been performed since 2014. Therefore, we conducted a systematic review and meta-analysis to evaluate the efficacy and safety profile of systemic corticosteroids in patients with COPD during exacerbations. METHODS: We searched relevant randomized control trials (RCTs) and analyzed the treatment failure, relapse, lung function, improvement in PaO2 and PaCO2, dyspnea, quality of life (QOL), length of stay in hospital and adverse events including hyperglycemia and mortality as the outcomes of interest. RESULTS: We identified a total of 12 RCTs (N = 1336). Systemic corticosteroids significantly reduced the treatment failure (odds ratios; OR 0.41, 95% confidence intervals; CI 0.25 to 0.67) and hospital length of stay (mean difference; MD -1.57 days, 95% CI -2.36 to -0.78) and improved FEV1 (MD 0.18 L, 95% CI 0.08 to 0.28) and dyspnea (transitional dyspnea index; MD 1.90, 95% CI 0.26 to 3.54) in COPD exacerbations compared to placebo. However, systemic corticosteroids were associated with a significantly higher incidence of adverse events (OR 1.83, 95% CI 1.25 to 2.69) and hyperglycemia (OR 2.94, 95% CI 1.68 to 5.14). CONCLUSIONS: In patients with moderate and severe COPD and severe obstructive impairment during exacerbations, systemic corticosteroids cause more adverse events, including hyperglycemia, than placebo but significantly reduce the treatment failure and hospital length of stay and improve FEV1 and dyspnea.


Hyperglycemia , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Adrenal Cortex Hormones/adverse effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Dyspnea/chemically induced , Hyperglycemia/drug therapy , Quality of Life
14.
BMJ Case Rep ; 17(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569738

A man in his late 60s with a history of well-controlled type 2 diabetes and hepatic cirrhosis presented to the emergency department due to uncontrollable hyperglycaemia following the initial brentuximab vedotin (BV) infusion. BV was initiated as a treatment for mycosis fungoides, a form of cutaneous T-cell lymphoma. The patient was diagnosed with severe hyperglycaemia with ketosis. Empiric treatment with amoxicillin-clavulanic acid, hydration and intravenous insulin infusion was initiated. Hyperglycaemia persisted despite receiving massive amounts of insulin and was corrected only after treatment with high-dose methylprednisolone for suspected type B insulin resistance. Extremely high and difficult-to-treat hyperglycaemia is a rare side effect of BV. Unfortunately, the patient died of upper gastrointestinal bleeding 22 days after discharge. In patients with obesity and/or diabetes mellitus, the blood glucose levels should be carefully monitored when treated with BV.


Diabetes Mellitus, Type 2 , Hyperglycemia , Immunoconjugates , Insulin Resistance , Insulins , Skin Neoplasms , Male , Humans , Brentuximab Vedotin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Skin Neoplasms/pathology , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Insulins/therapeutic use
15.
Neurology ; 102(9): e209323, 2024 May 14.
Article En | MEDLINE | ID: mdl-38626363

BACKGROUND AND OBJECTIVES: Baseline hyperglycemia is associated with worse outcomes in acute ischemic stroke (AIS), including higher risk of symptomatic intracerebral hemorrhage (sICH) following treatment with thrombolysis. Prospective data are lacking to inform management of post-thrombolysis hyperglycemia. In a prespecified analysis from the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial of hyperglycemic stroke management, we hypothesized that post-thrombolysis hyperglycemia is associated with a higher risk of sICH. METHODS: Hyperglycemic AIS patients <12 hours onset were randomized to intensive insulin (target range 80-130 mg/dL) vs standard sliding scale (80-179 mg/dL) over a 72-hour period, stratified by treatment with thrombolysis. Three board-certified vascular neurologists independently reviewed all sICH events occurring within 7 days, defined by neurologic deterioration of ≥4 points on the NIH Stroke Scale (NIHSS). Associations between blood glucose control and sICH were analyzed using logistic regression accounting for NIHSS, age, systolic blood pressure, onset to thrombolysis time, and endovascular therapy (odds ratios [OR], 95% CI). Additional analysis compared patients in a high-risk group (age older than 60 years and NIHSS ≥8) vs all others. Categorical variables and outcomes were compared using the χ2 test (p < 0.05). RESULTS: Of 1151 SHINE participants, 725 (63%) received thrombolysis (median age 65 years, 46% women, 29% Black, 18% Hispanic). The median NIHSS was 7, baseline blood glucose was 187 (interquartile range 153-247) mg/dL, and 80% were diabetic. Onset to thrombolysis time was 2.2 hours (1.6-2.9). Post-thrombolysis sICH occurred in 3.6% (3.0% intensive vs 4.3% standard glucose control, OR 1.10, 0.60-2.01, p = 0.697). In the first 12 hours, every 10 mg/dL higher glucose increased the odds of sICH (OR 1.08, 1.03-1.14, p = 0.004), and a greater proportion of glucose measures in the normal range (80-130 mg/dL) decreased the odds of sICH (0.89, 0.80-0.99, p = 0.030). These associations were strongest in the high-risk group (age older than 60 years and NIHSS ≥8). DISCUSSION: In this prespecified analysis from the SHINE trial, intensive insulin therapy was not associated with a reduced risk of post-thrombolysis sICH compared with standard sliding scale. However, early post-thrombolysis hyperglycemia was associated with a higher risk of sICH overall, particularly in older patients with more severe strokes. Further prospective research is warranted to address the risk of sICH in hyperglycemic stroke patients undergoing endovascular therapy. TRIAL REGISTRATION INFORMATION: NCT01369069.


Brain Ischemia , Hyperglycemia , Insulins , Ischemic Stroke , Stroke , Humans , Female , Aged , Middle Aged , Male , Tissue Plasminogen Activator/adverse effects , Blood Glucose , Fibrinolytic Agents/adverse effects , Stroke/complications , Stroke/drug therapy , Ischemic Stroke/drug therapy , Brain Ischemia/complications , Brain Ischemia/drug therapy , Thrombolytic Therapy/adverse effects , Treatment Outcome , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/complications , Hyperglycemia/chemically induced , Hyperglycemia/complications , Hyperglycemia/drug therapy , Insulins/therapeutic use
16.
Front Endocrinol (Lausanne) ; 15: 1250822, 2024.
Article En | MEDLINE | ID: mdl-38577574

Introduction: Pasireotide, a somatostatin receptor ligand, is approved for treating acromegaly and Cushing's disease (CD). Hyperglycemia during treatment can occur because of the drug's mechanism of action, although treatment discontinuation is rarely required. The prospective, randomized, Phase IV SOM230B2219 (NCT02060383) trial was designed to assess optimal management of pasireotide-associated hyperglycemia. Here, we investigated predictive factors for requiring antihyperglycemic medication during pasireotide treatment. Methods: Participants with acromegaly or CD initiated long-acting pasireotide 40 mg/28 days intramuscularly (acromegaly) or pasireotide 600 µg subcutaneously twice daily during pre-randomization (≤16 weeks). Those who did not need antihyperglycemic medication, were managed with metformin, or received insulin from baseline entered an observational arm ending at 16 weeks. Those who required additional/alternative antihyperglycemic medication to metformin were randomized to incretin-based therapy or insulin for an additional 16 weeks. Logistic-regression analyses evaluated quantitative and qualitative factors for requiring antihyperglycemic medication during pre-randomization. Results: Of 190 participants with acromegaly and 59 with CD, 88 and 15, respectively, did not need antihyperglycemic medication; most were aged <40 years (acromegaly 62.5%, CD 86.7%), with baseline glycated hemoglobin (HbA1c) <6.5% (<48 mmol/mol; acromegaly 98.9%, CD 100%) and fasting plasma glucose (FPG) <100 mg/dL (<5.6 mmol/L; acromegaly 76.1%, CD 100%). By logistic regression, increasing baseline HbA1c (odds ratio [OR] 3.6; P=0.0162) and FPG (OR 1.0; P=0.0472) and history of diabetes/pre-diabetes (OR 3.0; P=0.0221) predicted receipt of antihyperglycemic medication in acromegaly participants; increasing baseline HbA1c (OR 12.6; P=0.0276) was also predictive in CD participants. Investigator-reported hyperglycemia-related adverse events were recorded in 47.9% and 54.2% of acromegaly and CD participants, respectively, mainly those with diabetes/pre-diabetes. Conclusion: Increasing age, HbA1c, and FPG and pre-diabetes/diabetes were associated with increased likelihood of requiring antihyperglycemic medication during pasireotide treatment. These risk factors may be used to identify those who need more vigilant monitoring to optimize outcomes during pasireotide treatment.


Acromegaly , Diabetes Mellitus , Hyperglycemia , Metformin , Pituitary ACTH Hypersecretion , Prediabetic State , Somatostatin/analogs & derivatives , Humans , Acromegaly/complications , Acromegaly/drug therapy , Blood Glucose , Prediabetic State/drug therapy , Pituitary ACTH Hypersecretion/complications , Pituitary ACTH Hypersecretion/drug therapy , Prospective Studies , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus/drug therapy , Insulin/therapeutic use , Metformin/therapeutic use
17.
J Diabetes ; 16(4): e13543, 2024 Apr.
Article En | MEDLINE | ID: mdl-38584150

OBJECTIVE: To summarize the clinical characteristics and imaging manifestations of patients with nonketotic hyperglycemic hemichorea (NH-HC) and to explore the possible pathogenesis, diagnosis. and treatment of the disease in order to improve the understanding of this disease and avoid misdiagnosis. METHODS: Retrospective analysis was performed on the case data of five patients with NH-HC admitted to our hospital in recent years. The patients were treated in the department of endocrinology, department of neurology, and department of neurosurgery in our hospital, respectively. Meanwhile, relevant literatures were consulted for further learning. RESULTS: NH-HC is usually presented as a triad of nonketotic hyperglycemia, lateral chorea, and typical imaging manifestations of head magnetic resonance imaging or computed tomography, but the clinical manifestations are not the same, and imaging features may also be different, presenting a diversified trend in clinical practice. All five patients were given glucose-lowering drugs and improved with or without combination of drugs to control symptoms of chorea. CONCLUSION: NH-HC is a rare complication of diabetes, characterized by hyperglycemia and hemichorea. How to identify the extreme situation and make fast judgment is a top priority. Timely and correct control of blood glucose is the key to the treatment, and when necessary, application of dopamine receptor antagonists in patients with combination therapy can accelerate improvement of the clinical symptoms. The prognosis of NH-HC is good, the clinician should strengthen comprehensive understanding of this disease to avoid missed diagnosis or misdiagnosis and enable patients to get more timely and effective treatment.


Chorea , Diabetes Mellitus , Hyperglycemia , Humans , Chorea/diagnostic imaging , Chorea/etiology , Chorea/drug therapy , Retrospective Studies , Hyperglycemia/complications , Hyperglycemia/drug therapy , Magnetic Resonance Imaging/adverse effects
18.
Int J Biol Macromol ; 267(Pt 2): 131496, 2024 May.
Article En | MEDLINE | ID: mdl-38626839

We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1ß in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1ß was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.


Catechin , Chitosan , Diabetes Mellitus, Experimental , Hyperglycemia , Liver , Nanoparticles , Animals , Chitosan/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Mice , Liver/drug effects , Liver/metabolism , Liver/pathology , Hyperglycemia/drug therapy , Male , Blood Glucose , Streptozocin , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Glutathione/metabolism
19.
J Diabetes Sci Technol ; 18(3): 541-548, 2024 May.
Article En | MEDLINE | ID: mdl-38454631

BACKGROUND: Hyperglycemia occurs in 22% to 46% of hospitalized patients, negatively affecting patient outcomes, including mortality, inpatient complications, length of stay, and hospital costs. Achieving inpatient glycemic control is challenging due to inconsistent caloric intake, changes from home medications, a catabolic state in the setting of acute illness, consequences of acute inflammation, intercurrent infection, and limitations in labor-intensive glucose monitoring and insulin administration. METHOD: We conducted a retrospective cross-sectional analysis at the University of California San Francisco hospitals between September 3, 2020 and September 2, 2021, comparing point-of-care glucose measurements in patients on nil per os (NPO), continuous total parenteral nutrition, or continuous tube feeding assigned to our novel automated self-adjusting subcutaneous insulin algorithm (SQIA) or conventional, physician-driven insulin dosing. We also evaluated physician efficiency by tracking the number of insulin orders placed or modified. RESULTS: The proportion of glucose in range (70-180 mg/dL) was higher in the SQIA group than in the conventional group (71.0% vs 69.0%, P = .153). The SQIA led to a lower proportion of severe hyperglycemia (>250 mg/dL; 5.8% vs 7.2%, P = .017), hypoglycemia (54-69 mg/dL; 0.8% vs 1.2%, P = .029), and severe hypoglycemia (<54 mg/dL; 0.3% vs 0.5%, P = .076) events. The number of orders a physician had to place while a patient was on the SQIA was reduced by a factor of more than 12, when compared with while a patient was on conventional insulin dosing. CONCLUSIONS: The SQIA reduced severe hyperglycemia, hypoglycemia, and severe hypoglycemia compared with conventional insulin dosing. It also improved physician efficiency by reducing the number of order modifications a physician had to place.


Algorithms , Blood Glucose , Glycemic Control , Hypoglycemic Agents , Insulin , Humans , Retrospective Studies , Insulin/administration & dosage , Insulin/adverse effects , Female , Male , Middle Aged , Blood Glucose/analysis , Blood Glucose/drug effects , Cross-Sectional Studies , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Glycemic Control/adverse effects , Glycemic Control/methods , Aged , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hospitalization , Injections, Subcutaneous , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemia/blood , Hypoglycemia/epidemiology
20.
Arch Endocrinol Metab ; 68: e220413, 2024 03 25.
Article En | MEDLINE | ID: mdl-38530964

Nonketotic hyperglycemia may occur as a cause of chorea in patients with chronic decompensated diabetes. Because it is rare and consequently poorly studied, diagnosis and treatment can be delayed. Therefore, our objective was to summarize clinical and radiological features, as well as treatments performed, from previously reported cases to facilitate adequate management in clinical practice. We searched MEDLINE/PubMed, EMBASE, Cochrane, CINAHL, Web of Science, Scopus, and LILACS databases for studies published before April 23, 2021. We included case reports and case series of adults (aged ≥ 18 years) that described hyperglycemic chorea with measurement ofglycated hemoglobin (HbA1c) and cranial magnetic resonance imaging (MRI). Studies were excluded if participants were pregnant women, aged < 18 years, and had no description of chorea and/or physical examination. We found 121 studies that met the inclusion criteria, for a total of 214 cases. The majority of the included studies were published in Asia (67.3%). Most patients were women(65.3%) aged > 65 years (67.3%). Almost all patients had decompensated diabetes upon arrival at the emergency department (97.2%). The most common MRI finding was abnormalities of the basal ganglia (89.2%). There was no difference in patient recovery between treatment with insulin alone and in combination with other medications. Although rare, hyperglycemic chorea is a reversible cause of this syndrome; therefore, hyperglycemia should always be considered in these cases.


Chorea , Diabetes Mellitus , Dyskinesias , Hyperglycemia , Pregnancy , Adult , Humans , Female , Male , Chorea/diagnosis , Chorea/etiology , Chorea/pathology , Dyskinesias/diagnosis , Dyskinesias/etiology , Dyskinesias/pathology , Magnetic Resonance Imaging/adverse effects , Hyperglycemia/drug therapy
...